Discrete Index Whittaker Transforms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mellin transforms of Whittaker functions

In this note we show that for an arbitrary semisimple Lie group and any admissible irreducible Banach representation the Mellin transforms of Whittaker functions extend to meromorphic functions. We determine the possible poles.

متن کامل

Sliding discrete fractional transforms

Fractional transforms are useful tools for processing of non-stationary signals. The methods of implementing sliding discrete fractional Fourier transform (SDFRFT), sliding discrete fractional cosine transform (SDFRCT) and sliding discrete fractional sine transform (SDFRST) for real time processing of signals are presented. The performances of these sliding transforms, with regard to computatio...

متن کامل

Fast Discrete Curvelet Transforms

This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while the second is based on the wrapping of specially selected Fourier samples. The two implementations essentially differ by the cho...

متن کامل

Discrete Affine Wavelet Transforms

In this paper we show that discrete affine wavelet transforms can provide a tool for the analysis and synthesis of standard feedforward neural networks. It is shown that wavelet frames for L2(IR) can be constructed based upon sigmoids. The spatia-spectral localization property of wavelets can be exploited in defining the topology and determining the weights of a feedforward network. Training a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2021

ISSN: 1422-6383,1420-9012

DOI: 10.1007/s00025-021-01419-0